Author:
LECOUTRE CESAR,SIERRA SUSAN J.
Abstract
Let $\Bbbk$ be a field of characteristic zero. For any positive integer $n$ and any scalar $a\in \Bbbk$, we construct a family of Artin–Schelter regular algebras $R(n,a)$, which are quantizations of Poisson structures on $\Bbbk [x_{0},\ldots ,x_{n}]$. This generalizes an example given by Pym when $n=3$. For a particular choice of the parameter $a$ we obtain new examples of Calabi–Yau algebras when $n\geqslant 4$. We also study the ring theoretic properties of the algebras $R(n,a)$. We show that the point modules of $R(n,a)$ are parameterized by a bouquet of rational normal curves in $\mathbb{P}^{n}$, and that the prime spectrum of $R(n,a)$ is homeomorphic to the Poisson spectrum of its semiclassical limit. Moreover, we explicitly describe $\operatorname{Spec}R(n,a)$ as a union of commutative strata.
Publisher
Cambridge University Press (CUP)
Reference34 articles.
1. Two-generated graded algebras;Shirikov;Algebra Discrete Math.,2005
2. [Ric02] L. Richard , Equivalence rationnelle et homologie de Hochschild pour certaines algèbres polynomiales classiques et quantiques, PhD Thesis, Université Blaise Pascal, 2002.
3. Representations of Solvable Lie Algebras and the Gelfand-Kirillov Conjecture
4. Homogenized sl(2);Le Bruyn;Proc. Amer. Math. Soc.,1993
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献