Author:
BURSTALL F.,HERTRICH-JEROMIN U.,ROSSMAN W.
Abstract
Discrete linear Weingarten surfaces in space forms are characterized as special discrete $\unicode[STIX]{x1D6FA}$-nets, a discrete analogue of Demoulin’s $\unicode[STIX]{x1D6FA}$-surfaces. It is shown that the Lie-geometric deformation of $\unicode[STIX]{x1D6FA}$-nets descends to a Lawson transformation for discrete linear Weingarten surfaces, which coincides with the well-known Lawson correspondence in the constant mean curvature case.
Publisher
Cambridge University Press (CUP)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Periodic discrete Darboux transforms;Differential Geometry and its Applications;2023-12
2. Channel linear Weingarten surfaces in space forms;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2023-01-23
3. Discrete Ω$\Omega$‐nets and Guichard nets via discrete Koenigs nets;Proceedings of the London Mathematical Society;2022-11-09
4. Discrete Weierstrass-Type Representations;Discrete & Computational Geometry;2022-10-20
5. Discrete cyclic systems and circle congruences;Annali di Matematica Pura ed Applicata (1923 -);2022-05-10