Abstract
This paper concerns the classification of isogeny classes of$p$-divisible groups with saturated Newton polygons. Let$S$be a normal Noetherian scheme in positive characteristic$p$with a prime Weil divisor$D$. Let${\mathcal{X}}$be a$p$-divisible group over$S$whose geometric fibers over$S\setminus D$(resp. over$D$) have the same Newton polygon. Assume that the Newton polygon of${\mathcal{X}}_{D}$is saturated in that of${\mathcal{X}}_{S\setminus D}$. Our main result (Corollary 1.1) says that${\mathcal{X}}$is isogenous to a$p$-divisible group over$S$whose geometric fibers are all minimal. As an application, we give a geometric proof of the unpolarized analogue of Oort’s conjecture (Oort, J. Amer. Math. Soc.17(2) (2004), 267–296; 6.9).
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A note on supersingular abelian varieties;Bulletin of the Institute of Mathematics Academia Sinica NEW SERIES;2020-03-01