Author:
KURINCZUK ROBERT,MATRINGE NADIR
Abstract
Let $\unicode[STIX]{x1D70B}_{1},\unicode[STIX]{x1D70B}_{2}$ be a pair of cuspidal complex, or $\ell$-adic, representations of the general linear group of rank $n$ over a nonarchimedean local field $F$ of residual characteristic $p$, different to $\ell$. Whenever the local Rankin–Selberg $L$-factor $L(X,\unicode[STIX]{x1D70B}_{1},\unicode[STIX]{x1D70B}_{2})$ is nontrivial, we exhibit explicit test vectors in the Whittaker models of $\unicode[STIX]{x1D70B}_{1}$ and $\unicode[STIX]{x1D70B}_{2}$ such that the local Rankin–Selberg integral associated to these vectors and to the characteristic function of $\mathfrak{o}_{F}^{n}$ is equal to $L(X,\unicode[STIX]{x1D70B}_{1},\unicode[STIX]{x1D70B}_{2})$. As an application we prove that the $L$-factor of a pair of banal $\ell$-modular cuspidal representations is the reduction modulo $\ell$ of the $L$-factor of any pair of $\ell$-adic lifts.
Publisher
Cambridge University Press (CUP)
Reference14 articles.
1. On the realization of maximal simple types and epsilon factors of pairs
2. Conducteur des repr�sentations du groupe lin�aire
3. [3] J. W. Cogdell and I. I. Piatetski-Shapiro , Derivatives and L-functions for $\text{GL}(n)$ . Available at https://people.math.osu.edu/cogdell.1/ (To appear in the volume in honor of R. Howe’s 70th birthday.)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. ARCHIMEDEAN NEWFORM THEORY FOR;Journal of the Institute of Mathematics of Jussieu;2024-05-17
2. Galois self-dual cuspidal types and Asai local factors;Journal of the European Mathematical Society;2021-05-04