The Asymptotic Statistics of Random Covering Surfaces

Author:

Magee MichaelORCID,Puder DoronORCID

Abstract

AbstractLet$\Gamma _{g}$be the fundamental group of a closed connected orientable surface of genus$g\geq 2$. We develop a new method for integrating over the representation space$\mathbb {X}_{g,n}=\mathrm {Hom}(\Gamma _{g},S_{n})$, where$S_{n}$is the symmetric group of permutations of$\{1,\ldots ,n\}$. Equivalently, this is the space of all vertex-labeled,n-sheeted covering spaces of the closed surface of genusg.Given$\phi \in \mathbb {X}_{g,n}$and$\gamma \in \Gamma _{g}$, we let$\mathsf {fix}_{\gamma }(\phi )$be the number of fixed points of the permutation$\phi (\gamma )$. The function$\mathsf {fix}_{\gamma }$is a special case of a natural family of functions on$\mathbb {X}_{g,n}$called Wilson loops. Our new methodology leads to an asymptotic formula, as$n\to \infty $, for the expectation of$\mathsf {fix}_{\gamma }$with respect to the uniform probability measure on$\mathbb {X}_{g,n}$, which is denoted by$\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$. We prove that if$\gamma \in \Gamma _{g}$is not the identity andqis maximal such that$\gamma $is aqthpower in$\Gamma _{g}$, then$$\begin{align*}\mathbb{E}_{g,n}\left[\mathsf{fix}_{\gamma}\right]=d(q)+O(n^{-1}) \end{align*}$$as$n\to \infty $, where$d\left (q\right )$is the number of divisors ofq. Even the weaker corollary that$\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]=o(n)$as$n\to \infty $is a new result of this paper. We also prove that$\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$can be approximated to any order$O(n^{-M})$by a polynomial in$n^{-1}$.

Publisher

Cambridge University Press (CUP)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Analysis

Reference46 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Degenerating hyperbolic surfaces and spectral gaps for large genus;Analysis & PDE;2024-05-17

2. Statistics of finite degree covers of torus knot complements;Annales Henri Lebesgue;2023-12-12

3. Determinants of Laplacians on random hyperbolic surfaces;Journal d'Analyse Mathématique;2023-12

4. Local Statistics of Random Permutations from Free Products;International Mathematics Research Notices;2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3