Understanding the characteristics and mechanisms underlying suicide clusters in Australian youth: a comparison of cluster detection methods

Author:

Hill N.T.M.ORCID,Too L.S.,Spittal M.J.ORCID,Robinson J.

Abstract

Abstract Aims There is currently no gold-standard definition or method for identifying suicide clusters, resulting in considerable heterogeneity in the types of suicide clusters that are detected. This study sought to identify the characteristics, mechanisms and parameters of suicide clusters using three cluster detection methods. Specifically, the study aimed to: (1) determine the overlap in suicide clusters among each method, (2) compare the spatial and temporal parameters associated with different suicide clusters and (3) identify the demographic characteristics and rates of exposure to suicide among cluster and non-cluster members. Methods Suicide data were obtained from the National Coronial Information System. N = 3027 Australians, aged 10–24 who died by suicide in 2006–2015 were included. Suicide clusters were determined using: (1) poisson scan statistics, (2) a systematic search of coronial inquests and (3) descriptive network analysis. These methods were chosen to operationalise three different definitions of suicide clusters, namely clusters that are: (1) statistically significant, (2) perceived to be significant and (3) characterised by social links among three or more suicide descendants. For each method, the demographic characteristics and rates of exposure to suicide were identified, in addition to the maximum duration of suicide clusters, the geospatial overlap between suicide clusters, and the overlap of individual cluster members. Results Eight suicide clusters (69 suicides) were identified from the scan statistic, seven (40 suicides) from coronial inquests; and 11 (37 suicides) from the descriptive network analysis. Of the eight clusters detected using the scan statistic, two overlapped with clusters detected using the descriptive network analysis and one with clusters identified from coronial inquests. Of the seven clusters from coronial inquests, four overlapped with clusters from the descriptive network analysis and one with clusters from the scan statistic. Overall, 9.2% (12 suicides) of individuals were identified by more than one method. Prior exposure to suicide was 10.1% (N = 7) in clusters from the scan statistic, 32.5% (N = 13) in clusters from coronial inquest and 56.8% (N = 21) in clusters from the descriptive network analysis. Conclusion Each method identified markedly different suicide clusters. Evidence of social links between cluster members typically involved clusters detected using the descriptive network analysis. However, these data were limited to the availability information collected as part of the police and coroner investigation. Communities tasked with detecting and responding to suicide clusters may benefit from using the spatial and temporal parameters revealed in descriptive studies to inform analyses of suicide clusters using inferential methods.

Publisher

Cambridge University Press (CUP)

Subject

Psychiatry and Mental health,Public Health, Environmental and Occupational Health,Epidemiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3