Form of the trilobite digestive system: alimentary structures in Pterocephalia

Author:

Chatterton Brian D. E.,Johanson Zerina,Sutherland George

Abstract

Three types of alimentary canals (=midgut) occur in the Annelida and non-trilobite Arthropoda: 1) a sagittal tube with metamerically paired diverticula related to the number of somites; 2) a tube that is constricted slightly between somites; and 3) a simple tubular gut that may taper slightly backwards to the anus. At least two of these three types (1 and 3) occur in the Trilobita. Pterocephalia and Olenoides share the first type with the probable sister taxon to the Trilobita, Naraoia (Nectaspida), and this is probably the plesiomorphic condition for the class. Varying feeding habits may well have made this character homoplastic within each of these groups. The preservation of parts of the alimentary tract in specimens of Upper Cambrian Pterocephalia n. sp. (McKay Group, British Columbia) was probably a function of taphonomic and/or very early diagenetic changes that resulted from the type of food preferred by that trilobite. Other trilobites from the same beds do not have their soft parts preserved. The alimentary structures are preserved in a different fashion from, apparently unattached to, and an order of magnitude larger than genal caeca that occur in this taxon. Thus, genal caeca are regarded as imprints of circulatory rather than alimentary structures.Energy dispersive analysis of a fragment of preserved alimentary tract of Pterocephalia n. sp. showed the presence of Ca, Si, Al, Fe, P, K, Na, and Cl. These alimentary tracts are composed of a complex mixture of minerals that probably includes clays, detrital quartz, carbonates, phosphates, and oxides or hydroxides. The structure of these dark fillings is microcrystalline. The presence of detrital minerals as part of this mixture would suggest that this trilobite was a deposit feeder.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3