Thermal potentiation and mineralogical evolution in the Bivalvia (Mollusca)

Author:

Carter Joseph G.,Barrera Enriqueta,Tevesz Michael J. S.

Abstract

The most important factor controlling the timing of Phanerozoic mineralogical evolution in the Bivalvia appears to be thermal potentiation of calcite deposition in colder marine and estuarine environments. Cold temperature has promoted mineralogical evolution in the Bivalvia by kinetically facilitating (potentiating) initially weak biological controls for calcite, thereby exposing their genetic basis to natural selection. Calcite has evolved in bivalve shells for a variety of selective advantages, including resistance to dissolution; resistance to chemical boring by algae and gastropods; reduced shell density in swimming and soft-bottom reclining species; enhanced flexibility in simple prismatic shell layers; and fracture localization and economy of secretion in association with certain foliated structures.Endogenous calcite in bivalve shells varies from biologically induced to weakly and strongly biologically controlled. Biologically controlled calcite generally first appears in bivalve shells as an impersistent component of the outer shell layer, only later, in some groups, expanding to include the entire outer and then part or all of the middle and inner shell layers. The initial stages of mineralogical evolution are shown by certain modern Mytilidae, Veneridae and Petricolidae. In the latter two families, the calcite occurs as conellae in the outer part of the outer shell layer. Calcitic conellae in the inner shell layer of Pliocene Mercenaria are not barnacle plates, as previously indicated, but endogenous calcite comparable in origin to other venerid conellae. Their occurrence in Mercenaria may reflect thermal potentiation of weak biological controls for calcite, as well as local detachment of the secretory mantle epithelium near the pallial and adductor musculature.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology

Reference140 articles.

1. Waller T. R. 1972. The functional significance of some shell microstructures in the Pectinacea (Mollusca: Bivalvia). Proceedings of the International Geological Congress, 24th Session, Montreal, Canada, Section 7, Paleontology, p. 48–56.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3