Evolution and phylogenetic significance of cardioidean shell microstructure (Mollusca, Bivalvia)

Author:

Schneider Jay A.,Carter Joseph G.

Abstract

The shell microstructure of Carboniferous and Triassic permophorids; Triassic and Recent carditids; Devonian, Carboniferous, and Triassic crassatelloideans; and Jurassic through Recent cardioideans is examined in a phylogenetic context, using separate microstructural and morphologic data sets, as well as a combined data set. The microstructural and morphologic data sets are significantly incongruent, but the combined data set suggests that modiomorphoideans (modiomorphids and permophorids) are basal to crassatelloideans; crassatelloideans are basal to carditids (includingSeptocardia), and carditids are basal to cardiids. On the other hand, the possibility of direct permophorid ancestry for the carditid-cardiid clade cannot be excluded, as suggested by the retention of permophorid-like matted (transitional nacreous-porcelaneous) structure in some early carditids and cardiids. In the absence of stratigraphic data and other evidence for phylogenetic relationships, shell microstructure offers limited potential for assessing subfamily-level phylogenetic relationships within the Cardioidea. This is because of microstructural convergences reflecting biomechanical adaptations for fracture control and abrasion resistance, and possibly also selection for metabolic economy of secretion in tropical, oligotrophic habitats. General evolutionary trends in cardiid shell microstructure are nevertheless apparent: Cretaceous cardiids completely replaced an ancestral laminar, matted structure in their inner shell layer with non-laminar porcelaneous structures; evolved better defined CL structure, stronger reflection of the shell margins, and increased thickness or secondary loss of the ancestral prismatic outer shell layer; and, inProtocardia(Pachycardium)stantoni, added inductural deposition. Some Cenozoic cardiids then evolved wider first-order crossed lamellae, non-denticular composite prisms, composite fibrous prisms, ontogenetic submergence of a juvenile non-denticular composite prismatic outer shell layer into the CL middle shell layer, or ontogenetic submergence of the inner part of a juvenile fibrous prismatic outer shell layer into the CL middle shell layer.The shell microstructure ofHemidonax donaciformisis unusual for a cardioidean, and suggests closer affinities with the superfamily Tellinoidea than with the superfamily Cardioidea.Extensive inductural deposits inProtocardia(Pachycardium)stantoniraise the possibility that photosymbiosis evolved among some Mesozoic members of the Protocardiinae, thereby increasing the likelihood that this feature has evolved several times independently in the Cardiidae.Cemented, calcareous periostracal granules or spines are known to occur in modiolopsoideans, mytiloideans, modiomorphids, permophorids, trigonioids, astartids, cardiids, myoids, pholadomyoids, and septibranchoids. Consequently, the presence of these structures is not necessarily indicative of close anomalodesmatan affinities.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology

Reference152 articles.

1. Shell microstructure of a Middle Devonian (Hamilton Group) bivalve fauna from central New York;Carter;Journal of Paleontology,1978

2. Shell structure of the Atlantic ribbed mussel, Geukensia demissa, (Dillwyn): A re-evaluation;Lutz;Bulletin of the American Malacological Union,1978

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3