A Model-Based Product Evaluation Protocol for Comparison of Safety-Engineered Protection Mechanisms of Winged Blood Collection Needles

Author:

Haupt C.,Spaeth J.,Ahne T.,Goebel U.,Steinmann D.

Abstract

OBJECTIVETo evaluate differences in product characteristics and user preferences of safety-engineered protection mechanisms of winged blood collection needles.DESIGNRandomized model-based simulation study.SETTINGUniversity medical center.PARTICIPANTSA total of 33 third-year medical students.METHODSVenipuncture was performed using winged blood collection needles with 4 different safety mechanisms: (a) Venofix Safety, (b) BD Vacutainer Push Button, (c) Safety-Multifly, and (d) Surshield Surflo. Each needle type was used in 3 consecutive tries: there was an uninstructed first handling, then instructions were given according to the operating manual; subsequently, a first trial and second trial were conducted. Study end points included successful activation, activation time, single-handed activation, correct activation, possible risk of needlestick injury, possibility of deactivation, and preferred safety mechanism.RESULTSThe overall successful activation rate during the second trial was equal for all 4 devices (94%–100%). Median activation time was (a) 7 s, (b) 2 s, (c) 9 s, and (d) 7 s. Single-handed activation during the second trial was (a) 18%, (b) 82%, (c) 15%, and (d) 45%. Correct activation during the second trial was (a) 3%, (b) 64%, (c) 15%, and (d) 39%. Possible risk of needlestick injury during the second trial was highest with (d). Possibility of deactivation was (a) 0%, (b) 12%, (c) 9%, and (d) 18%. Individual preferences for each system were (a) 11, (b) 17, (c) 5, and (d) 0. The main reason for preference was the comprehensive safety mechanism.CONCLUSIONSignificant differences exist between safety mechanisms of winged blood collection needles.Infect Control Hosp Epidemiol 2016;37:505–511

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Microbiology (medical),Epidemiology

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3