Estimating large-scale structures in wall turbulence using linear models

Author:

Illingworth Simon J.ORCID,Monty Jason P.,Marusic Ivan

Abstract

A dynamical systems approach is used to devise a linear estimation tool for channel flow at a friction Reynolds number of $Re_{\unicode[STIX]{x1D70F}}=1000$. The estimator uses time-resolved velocity measurements at a single wall-normal location to estimate the velocity field at other wall-normal locations (the data coming from direct numerical simulations). The estimation tool builds on the work of McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382) by using a Navier–Stokes-based linear model and treating any nonlinear terms as unknown forcings to an otherwise linear system. In this way nonlinearities are not ignored, but instead treated as an unknown model input. It is shown that, while the linear estimator qualitatively reproduces large-scale flow features, it tends to overpredict the amplitude of velocity fluctuations – particularly for structures that are long in the streamwise direction and thin in the spanwise direction. An alternative linear model is therefore formed in which a simple eddy viscosity is used to model the influence of the small-scale turbulent fluctuations on the large scales of interest. This modification improves the estimator performance significantly. Importantly, as well as improving the performance of the estimator, the linear model with eddy viscosity is also able to predict with reasonable accuracy the range of wavenumber pairs and the range of wall-normal heights over which the estimator will perform well.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3