A note on Stokes’ problem in dense granular media using the -rheology

Author:

John Soundar Jerome J.ORCID,Di Pierro B.

Abstract

The classical Stokes’ problem describing the fluid motion due to a steadily moving infinite wall is revisited in the context of dense granular flows of mono-dispersed beads using the recently proposed$\unicode[STIX]{x1D707}(I)$-rheology. In Newtonian fluids, molecular diffusion brings about a self-similar velocity profile and the boundary layer in which the fluid motion takes place increases indefinitely with time$t$as$\sqrt{\unicode[STIX]{x1D708}t}$, where$\unicode[STIX]{x1D708}$is the kinematic viscosity. For a dense granular viscoplastic liquid, it is shown that the local shear stress, when properly rescaled, exhibits self-similar behaviour at short time scales and it then rapidly evolves towards a steady-state solution. The resulting shear layer increases in thickness as$\sqrt{\unicode[STIX]{x1D708}_{g}t}$analogous to a Newtonian fluid where$\unicode[STIX]{x1D708}_{g}$is an equivalent granular kinematic viscosity depending not only on the intrinsic properties of the granular medium, such as grain diameter$d$, density$\unicode[STIX]{x1D70C}$and friction coefficients, but also on the applied pressure$p_{w}$at the moving wall and the solid fraction$\unicode[STIX]{x1D719}$(constant). In addition, the$\unicode[STIX]{x1D707}(I)$-rheology indicates that this growth continues until reaching the steady-state boundary layer thickness$\unicode[STIX]{x1D6FF}_{s}=\unicode[STIX]{x1D6FD}_{w}(p_{w}/\unicode[STIX]{x1D719}\unicode[STIX]{x1D70C}g)$, independent of the grain size, at approximately a finite time proportional to$\unicode[STIX]{x1D6FD}_{w}^{2}(p_{w}/\unicode[STIX]{x1D70C}gd)^{3/2}\sqrt{d/g}$, where$g$is the acceleration due to gravity and$\unicode[STIX]{x1D6FD}_{w}=(\unicode[STIX]{x1D70F}_{w}-\unicode[STIX]{x1D70F}_{s})/\unicode[STIX]{x1D70F}_{s}$is the relative surplus of the steady-state wall shear stress$\unicode[STIX]{x1D70F}_{w}$over the critical wall shear stress$\unicode[STIX]{x1D70F}_{s}$(yield stress) that is needed to bring the granular medium into motion. For the case of Stokes’ first problem when the wall shear stress$\unicode[STIX]{x1D70F}_{w}$is imposed externally, the$\unicode[STIX]{x1D707}(I)$-rheology suggests that the wall velocity simply grows as$\sqrt{t}$before saturating to a constant value whereby the internal resistance of the granular medium balances out the applied stresses. In contrast, for the case with an externally imposed wall speed$u_{w}$, the dense granular medium near the wall initially maintains a shear stress very close to$\unicode[STIX]{x1D70F}_{d}$which is the maximum internal resistance via grain–grain contact friction within the context of the$\unicode[STIX]{x1D707}(I)$-rheology. Then the wall shear stress$\unicode[STIX]{x1D70F}_{w}$decreases as$1/\sqrt{t}$until ultimately saturating to a constant value so that it gives precisely the same steady-state solution as for the imposed shear-stress case. Thereby, the steady-state wall velocity, wall shear stress and the applied wall pressure are related as$u_{w}\sim (g\unicode[STIX]{x1D6FF}_{s}^{2}/\unicode[STIX]{x1D708}_{g})f(\unicode[STIX]{x1D6FD}_{w})$where$f(\unicode[STIX]{x1D6FD}_{w})$is either$O(1)$if$\unicode[STIX]{x1D70F}_{w}\sim \unicode[STIX]{x1D70F}_{s}$or logarithmically large as$\unicode[STIX]{x1D70F}_{w}$approaches$\unicode[STIX]{x1D70F}_{d}$.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3