Clustering and increased settling speed of oblate particles at finite Reynolds number

Author:

Fornari WalterORCID,Ardekani Mehdi NiaziORCID,Brandt LucaORCID

Abstract

We study the settling of rigid oblates in a quiescent fluid using interface-resolved direct numerical simulations. In particular, an immersed boundary method is used to account for the dispersed solid phase together with lubrication correction and collision models to account for short-range particle–particle interactions. We consider semi-dilute suspensions of oblate particles with aspect ratio $AR=1/3$ and solid volume fractions $\unicode[STIX]{x1D719}=0.5{-}10\,\%$. The solid-to-fluid density ratio $R=1.02$ and the Galileo number (i.e. the ratio between buoyancy and viscous forces) based on the diameter of a sphere with equivalent volume $Ga=60$. With this choice of parameters, an isolated oblate falls vertically with a steady wake with its broad side perpendicular to the gravity direction. At this $Ga$, the mean settling speed of spheres is a decreasing function of the volume $\unicode[STIX]{x1D719}$ and is always smaller than the terminal velocity of the isolated particle, $V_{t}$. On the contrary, in dilute suspensions of oblate particles (with $\unicode[STIX]{x1D719}\leqslant 1\,\%$), the mean settling speed is approximately 33 % larger than $V_{t}$. At higher concentrations, the mean settling speed decreases becoming smaller than the terminal velocity $V_{t}$ between $\unicode[STIX]{x1D719}=5\,\%$ and 10 %. The increase of the mean settling speed is due to the formation of particle clusters that for $\unicode[STIX]{x1D719}=0.5{-}1\,\%$ appear as columnar-like structures. From the pair distribution function we observe that it is most probable to find particle pairs almost vertically aligned. However, the pair distribution function is non-negligible all around the reference particle indicating that there is a substantial amount of clustering at radial distances between 2 and $6c$ (with $c$ the polar radius of the oblate). Above $\unicode[STIX]{x1D719}=5\,\%$, the hindrance becomes the dominant effect, and the mean settling speed decreases below $V_{t}$. As the particle concentration increases, the mean particle orientation changes and the mean pitch angle (the angle between the particle axis of symmetry and gravity) increases from $23^{\circ }$ to $47^{\circ }$. Finally, we increase $Ga$ from 60 to 140 for the case with $\unicode[STIX]{x1D719}=0.5\,\%$ and find that the mean settling speed (normalized by $V_{t}$) decreases by less than 1 % with respect to $Ga=60$. However, the fluctuations of the settling speed around the mean are reduced and the probability of finding vertically aligned particle pairs increases.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference42 articles.

1. Active suspensions in thin films: nutrient uptake and swimmer motion

2. Suspension of solid particles in a density stratified fluid

3. Collision model for fully resolved simulations of flows laden with finite-size particles;Costa;Phys. Rev. E,2015

4. Wake-Induced Oscillatory Paths of Bodies Freely Rising or Falling in Fluids

5. A drag coefficient correlation;Schiller;Vdi Zeitung,1935

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3