Toward an understanding of supersonic modes in boundary-layer transition for hypersonic flow over blunt cones

Author:

Mortensen Clifton H.ORCID

Abstract

Realistic flight vehicles for reentry into the Earth’s atmosphere are commonly similar to blunted cones. The main reason for blunting a cone is to mitigate high heat loads at the nose. Another reason for blunting the cone is to delay boundary-layer transition. It is commonly understood that the second mode is damped in flow over a cone as the nose radius is increased. This is thought to lead to the delay in transition. Here, a blunted cone at a realistic reentry trajectory point with significant real-gas effects is studied. It is shown, using linear stability theory and direct numerical simulation, that there exist multiple unstable modal instabilities in the boundary layer. One of these modal instabilities is called the supersonic mode, as its phase velocity is supersonic relative to the flow velocity at the edge of the boundary layer. Its growth rate is found to increase with increasing nose radius until a certain nose radius is reached. After this radius, any further increase in nose radius decreases its growth rate. There is adequate agreement between theory and direct numerical simulation for the growth rate, phase velocity and eigenfunction of the supersonic mode. At the reentry conditions tested, the supersonic mode is more likely the cause of boundary-layer transition than the second mode for blunted cones with a small wall-temperature ratio. Initial parametric studies confirm that a decrease in wall temperature amplifies the supersonic mode. Also, the supersonic mode’s growth rate is shown to be a maximum when its phase velocity is aligned with the flow velocity.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference27 articles.

1. Prehistory of Instability in a Hypersonic Boundary Layer

2. Shock tunnel investigation of boundary-layer transition at M = 5. 5;Stetson;AIAA J.,1967

3. Mack, L. 1984 Boundary layer linear stability theory. AGARD Rep. No. 709.

4. Review of Linear Compressible Stability Theory

5. Softley, E. 1968 Transition of the hypersonic boundary layer on a cone: part II – experiments at $M=10$ and more on blunt cone transition. Tech. Rep. R68SD14, General Electric Co.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3