Interfacial dynamics of a confined liquid–vapour bilayer undergoing evaporation

Author:

Pillai Dipin S.ORCID,Narayanan R.

Abstract

The dynamics of an interface between a thin liquid–vapour bilayer undergoing evaporation is studied. Both phases are considered to be hydrodynamically and thermally active, with momentum and thermal inertia taken into account. A reduced-order model based on the weighted-residual integral boundary layer method is used to investigate the dynamical behaviour for two cases,viz., phase change in the absence of gravity and then phase change in the presence of gravity. In the first case, it is shown that evaporative instability may cause rupture of either liquid or vapour layer depending on system parameters. Close to interfacial rupture, the disjoining pressure due to intermolecular forces results in the formation of drops (bubbles) separated by a thin film for low liquid (vapour) hold-up. Momentum inertia is shown to have a stabilizing effect, while thermal inertia has a destabilizing effect. In the second case, evaporative suppression of Rayleigh–Taylor (R–T) instability shows emergence of up to two neutral wavenumbers. Weak nonlinear analysis of these neutral wavenumbers suggests that the instability may be either supercritical or subcritical depending on the rate of evaporation. At high rates of evaporation, both neutral wavenumbers are supercritical and computations on the interface evolution lead to nonlinear saturated steady states. Momentum inertia slows down the rate of interface deformation and results in an oscillatory approach to saturation. Thermal inertia results in larger interface deformation and the saturated steady state is shifted closer to the wall. At very low evaporation rates, only one neutral wavenumber of subcritical nature exists. The nonlinear evolution of the interface in this case is then similar to pure R–T instability, exhibiting spontaneous lateral sliding as it approaches the wall.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference51 articles.

1. Interfacial conditions during evaporation or condensation of water;Ward;Phys. Rev. E,2001

2. Wave dynamics on a thin-liquid film falling down a heated wall

3. DYNAMICS OF POLYMERS AT INTERFACES

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3