Slow viscous flow of two porous spherical particles translating along the axis of a cylinder

Author:

Yao Xin,Ng Chyi Huey,Teo Jia Rui Amanda,Marcos ORCID,Wong Teck NengORCID

Abstract

We describe the motion of two freely moving porous spherical particles located along the axis of a cylindrical tube with background Poiseuille flow at low Reynolds number. The stream function and a framework based on cylindrical harmonics are adopted to solve the flow field around the particles and the flow within the tube, respectively. The two solutions are employed in an iterated framework using the method of reflections. We first consider the case of two identical particles, followed by two particles with different dimensions. In both cases, the drag force coefficients of the particles are solved as functions of the separation distance between the particles and the permeability of the particles. The detailed flow field in the vicinity of the two particles is investigated by plotting the streamlines and velocity contours. We find that the particle–particle interaction is dependent on the separation distance, particle sizes and permeability of the particles. Our analysis reveals that when the permeability of the particles is large, the streamlines are more parallel and the particle–particle interaction has less effect on the particle motion. We further show that a smaller permeability and bigger particle size generally tend to squeeze the streamlines and velocity contour towards the wall.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3