The initial development of a jet caused by fluid, body and free surface interaction with a uniformly accelerated advancing or retreating plate. Part 1. The principal flow

Author:

Gallagher M. T.ORCID,Needham D. J.ORCID,Billingham J.ORCID

Abstract

The free surface and flow field structure generated by the uniform acceleration (with dimensionless acceleration $\unicode[STIX]{x1D70E}$) of a rigid plate, inclined at an angle $\unicode[STIX]{x1D6FC}\in (0,\unicode[STIX]{x03C0}/2)$ to the exterior horizontal, as it advances ($\unicode[STIX]{x1D70E}>0$) or retreats ($\unicode[STIX]{x1D70E}<0$) from an initially stationary and horizontal strip of inviscid incompressible fluid under gravity, are studied in the small-time limit via the method of matched asymptotic expansions. This work generalises the case of a uniformly accelerating plate advancing into a fluid as studied by Needham et al. (Q. J. Mech. Appl. Maths, vol. 61 (4), 2008, pp. 581–614). Particular attention is paid to the innermost asymptotic regions encompassing the initial interaction between the plate and the free surface. We find that the structure of the solution to the governing initial boundary value problem is characterised in terms of the parameters $\unicode[STIX]{x1D6FC}$ and $\unicode[STIX]{x1D707}$ (where $\unicode[STIX]{x1D707}=1+\unicode[STIX]{x1D70E}\tan \unicode[STIX]{x1D6FC}$), with a bifurcation in structure as $\unicode[STIX]{x1D707}$ changes sign. This bifurcation in structure leads us to question the well-posedness and stability of the governing initial boundary value problem with respect to small perturbations in initial data in the innermost asymptotic regions, the discussion of which will be presented in the companion paper Gallagher et al. (J. Fluid Mech. vol. 841, 2018, pp. 146–166). In particular, when $(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D707})\in (0,\unicode[STIX]{x03C0}/2)\times \mathbb{R}^{+}$, the free surface close to the initial contact point remains monotone, and encompasses a swelling jet when $(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D707})\in (0,\unicode[STIX]{x03C0}/2)\times [1,\infty )$ or a collapsing jet when $(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D707})\in (0,\unicode[STIX]{x03C0}/2)\times (0,1)$. However, when $(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D707})\in (0,\unicode[STIX]{x03C0}/2)\times \mathbb{R}^{-}$, the collapsing jet develops a more complex structure, with the free surface close to the initial contact point now developing a finite number of local oscillations, with near resonance type behaviour occurring close to a countable set of critical plate angles $\unicode[STIX]{x1D6FC}=\unicode[STIX]{x1D6FC}_{n}^{\ast }\in (0,\unicode[STIX]{x03C0}/2)$ ($n=1,2,\ldots$).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3