Dynamics of detonations with a constant mean flow divergence

Author:

Radulescu Matei I.ORCID,Borzou Bijan

Abstract

An exponential horn geometry is introduced in order to establish cellular detonations with a constant mean lateral mass divergence, propagating at quasi-steady speeds below the Chapman–Jouguet value. The experiments were conducted in $2\text{C}_{2}\text{H}_{2}+5\text{O}_{2}+21\text{Ar}$ and $\text{C}_{3}\text{H}_{8}+5\text{O}_{2}$. Numerical simulations were also performed for weakly unstable cellular detonations to test the validity of the exponential horn geometry. The experiments and simulations demonstrated that such quasi-steady state detonations can be realized, hence permitting us to obtain the relations between the detonation speed and mean lateral flow divergence for cellular detonations in an unambiguous manner. The experimentally obtained speed ($D$) dependencies on divergence ($K$) were compared with the predictions for steady detonations with lateral flow divergence obtained with the real thermo-chemical data of the mixtures. For the $2\text{C}_{2}\text{H}_{2}+5\text{O}_{2}+21\text{Ar}$ system, reasonable agreement was found between the experiments and steady wave prediction, particularly for the critical divergence leading to failure. Observations of the reaction zone structure in these detonations indicated that all the gas reacted very close to the front, as the transverse waves were reactive. The experiments obtained in the much more unstable detonations in $\text{C}_{3}\text{H}_{8}+5\text{O}_{2}$ showed significant differences between the experimentally derived $D(K)$ curve and the prediction of steady wave propagation. The latter was found to significantly under-predict the detonability of cellular detonations. The transverse waves in this mixture were found to be non-reactive, hence permitting the shedding of non-reacted pockets, which burn via turbulent flames on their surface. It is believed that the large differences between experiment and the inviscid model in this class of cellular structures is due to the importance of diffusive processes in the burn-out of the non-reacted pockets. The empirical tuning of a global one-step chemical model to describe the macro-scale kinetics in cellular detonations revealed that the effective activation energy was lower by 14 % in $2\text{C}_{2}\text{H}_{2}+5\text{O}_{2}+21\text{Ar}$ and 54 % in the more unstable $\text{C}_{3}\text{H}_{8}+5\text{O}_{2}$ system. This confirms previous observations that diffusive processes in highly unstable detonations are responsible for reducing the thermal ignition character of the gases processed by the detonation front.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference50 articles.

1. On the normal detonation shock velocity-curvature relationship for materials with large activation energy

2. Hydrodynamics of a Reacting and Relaxing Fluid

3. Williams, F. A. 2014 Chemical-Kinetic Mechanisms for Combustion Applications. San Diego Mechanism web page, Mechanical and Aerospace Engineering (Combustion Research), University of California at San Diego (http://combustion.ucsd.edu).

4. Wang, H. , You, X. , Joshi, A. V. , Davis, S. G. , Laskin, A. , Egolfopoulos, F.  & Law, C. K. 2007 USC Mech version II: high-temperature combustion reation model of H2/CO/C1-C4 compounds (http://ignis.usc.edu/Mechanisms/USC-Mech-II.htm).

5. Two kinds of transverse wave structures in multifront detonation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3