Singularity formation on perturbed planar shock waves

Author:

Mostert W.ORCID,Pullin D. I.,Samtaney R.,Wheatley V.

Abstract

We present an analysis that predicts the time to development of a singularity in the shape profile of a spatially periodic perturbed, planar shock wave for ideal gas dynamics. Beginning with a formulation in complex coordinates of Whitham’s approximate model geometrical shock dynamics (GSD), we apply a spectral treatment to derive the asymptotic form for the leading-order behaviour of the shock Fourier coefficients for large mode numbers and time. This is shown to determine a critical time at which the coefficients begin to decay, with respect to mode number, at an algebraic rate with an exponent of $-5/2$, indicating loss of analyticity and the formation of a singularity in the shock geometry. The critical time is found to be inversely proportional to a representative measure of perturbation amplitude $\unicode[STIX]{x1D716}$ with an explicit analytic form for the constant of proportionality in terms of gas and shock parameters. To leading order, the time to singularity formation is dependent only on the first Fourier mode. Comparison with results of numerical solutions to the full GSD equations shows that the predicted critical time somewhat underestimates the time for shock–shock (triple-point) formation, where the latter is obtained by post-processing the numerical GSD results using an edge-detection algorithm. Aspects of the analysis suggest that the appearance of loss of analyticity in the shock surface may be a precursor to the first appearance of shock–shocks, which may account for part of the discrepancy. The frequency of oscillation of the shock perturbation is accurately predicted. In addition, the analysis is extended to the evolution of a perturbed planar, fast magnetohydrodynamic shock for the case when the external magnetic field is aligned parallel to the unperturbed shock. It is found that, for a strong shock, the presence of the magnetic field produces only a higher-order correction to the GSD equations with the result that the time to loss of analyticity is the same as for the gas-dynamic flow. Limitations and improvements for the analysis are discussed, as are comparisons with the analogous appearance of singularity formation in vortex-sheet evolution in an incompressible inviscid fluid.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3