Dynamical similarity and universality of drop size and velocity spectra in sprays

Author:

Dhivyaraja K.,Gaddes D.,Freeman E.,Tadigadapa S.,Panchagnula M. V.ORCID

Abstract

Sprays are a class of multiphase flows which exhibit a wide range of drop size and velocity scales spanning several orders of magnitude. The objective of the current work is to experimentally investigate the prospect of dynamical similarity in these flows. We are also motivated to identify a choice of length and time scales which could lead towards a universal description of the drop size and velocity spectra. Towards this end, we have fabricated a cohort of geometrically similar pressure swirl atomizers using micro-electromechanical systems (MEMS) as well as additive manufacturing technology. We have characterized the dynamical characteristics of the sprays as well as the drop size and velocity spectra (in terms of probability density functions, p.d.f.s) over a wide range of Reynolds ($Re$) and Weber numbers ($We$) using high-speed imaging and phase Doppler interferometry, respectively. We show that the dimensionless Sauter mean diameter ($D_{32}$) scaled to the boundary layer thickness in the liquid sheet at the nozzle exit ($\unicode[STIX]{x1D6FF}_{o}$) exhibits self-similarity in the core region of the spray, but not in the outer zone. In addition, we show that global drop size spectra in the sprays show two distinct characteristics. The spectra from varying $Re$ and $We$ collapse onto a universal p.d.f. for drops of size $x$ where $x/\unicode[STIX]{x1D6FF}_{o}>1$. For $x/\unicode[STIX]{x1D6FF}_{o}<1$, a residual effect of $Re$ and $We$ persists in the size spectra. We explain this characteristic by the fact that the physical mechanisms that cause large drops is different from that which is responsible for the small drops. Similarly, with the liquid sheet velocity at the nozzle exit ($u_{s}$) as the choice of velocity scale, we show that drops moving with a velocity $u$ such that $u/u_{s}<1$ collapse onto a universal p.d.f., while drops with $u/u_{s}>1$ exhibit a residual effect of $Re$ and $We$. From these observations, we suggest that physically accurate models for drop size and velocity spectra should rely on piecewise descriptions of the p.d.f. rather than invoking a single mathematical form for the entire distribution. Finally, we show from a dynamical modal analysis that the conical liquid sheet flapping characteristics exhibit a sharp transition in Strouhal number ($St$) at a critical $Re$.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3