Abstract
Primary fluid recovery from a porous medium is driven by the volumetric expansion of thein situfluid. For production from a petroleum reservoir, primary recovery accounts for more than half of the total amount of recovered hydrocarbon. The primary recovery process is studied here at the pore scale and the macroscopic scale. The pore-scale flow is first analysed using the compressible Navier–Stokes equations and the mathematical theory for low-Mach-number flow developed by Klainerman & Majda (Commun. Pure Appl. Maths, vol. 34 (4), 1981, pp. 481–524; vol. 35 (5), 1982, pp. 629–651). An asymptotic analysis shows that the pore-scale flow is governed by the self-diffusion of the fluid and it exhibits a slip-like mass flow rate, even though the velocity satisfies the no-slip condition on the pore wall. The pore-scale density equation is then upscaled to a macroscopic diffusion equation for the density which possesses a diffusion coefficient proportional to the fluid’s kinematic viscosity. Darcy’s law is shown to be inapplicable to primary fluid recovery and it should be replaced by a new mass flux equation which depends on the porosity but not on the permeability. This is in stark contrast to the classical result and it can have important implications for hydrocarbon recovery as well as other applications.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献