Effects of surface roughness on a separating turbulent boundary layer

Author:

Wu WenORCID,Piomelli Ugo

Abstract

Separating turbulent boundary layers over smooth and rough flat plates are studied by large-eddy simulations. A suction–blowing velocity distribution imposed at the top boundary of the computation domain produces an adverse-to-favourable pressure gradient and creates a closed separation bubble. The Reynolds number based on the momentum thickness and the free-stream velocity before the pressure gradient begins is 2500. Virtual sand grain roughness in the fully rough regime is modelled by an immersed boundary method. Compared with a smooth-wall case, streamline detachment occurs earlier and the separation region is substantially larger for the rough-wall case, due to the momentum deficit caused by the roughness. The adverse pressure gradient decreases the form drag, so that the point where the wall stress vanishes does not coincide with the detachment of the flow from the surface. A thin reversed-flow region is formed below the roughness crest; the presence of recirculation regions behind each roughness element also affects the intermittency of the near-wall flow, so that upstream of the detachment point the flow can be reversed half of the time, but its average velocity can still be positive. The separated shear layer exhibits higher turbulent kinetic energy (TKE) in the rough-wall case, the growth of the TKE there begins earlier relative to the separation point, and the peak TKE occurs close to the separation point. The momentum deficit caused by the roughness, again, plays a critical role in these changes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3