Two-layer hydraulics at the river–ocean interface

Author:

Poggioli Anthony R.ORCID,Horner-Devine Alexander R.

Abstract

Liftoff is the hydraulically forced detachment of buoyant freshwater from the channel bottom or seabed that occurs as river water discharges into the coastal ocean. It is a key feature of strongly stratified systems, occurring well upstream in the channel or seaward of the river mouth under sufficiently strong forcing. We present a two-layer hydraulic solution for the river–ocean interface that considers the river, estuary and near-field river plume as a single interlinked system, extending previous work that considered them separately. This unified approach provides a prediction of the liftoff location and free-surface profile for a wide range of forcing conditions, which are characterized in terms of the freshwater Froude number $F_{f}\equiv Q/b_{0}\sqrt{g_{0}^{\prime }h_{0}^{3}}$. Here, $Q$ is the river discharge, $b_{0}$ is the channel width, $g_{0}^{\prime }\equiv (\unicode[STIX]{x0394}\unicode[STIX]{x1D70C}_{0}/\unicode[STIX]{x1D70C}_{2})g$ is the reduced gravitational acceleration, $\unicode[STIX]{x0394}\unicode[STIX]{x1D70C}_{0}$ is the density contrast between fresh and ocean water and $h_{0}$ is the total water depth at the river mouth. The solution is validated with laboratory experiments using an experimental apparatus consisting of a long, sloping river channel that discharges into a deep, wide saltwater basin. The experiments simulate the full range of hydraulic behaviours predicted by the model, from saltwater intrusion to offshore liftoff. For $F_{f}<1$, liftoff occurs in the estuary channel and our results show that the relationship between intrusion length and $F_{f}$ depends on the channel slope. For $F_{f}>1$, corresponding to flood conditions in many natural systems, liftoff is forced outside the river mouth and the hydraulic coupling between the channel and shelf becomes more important. For these conditions and for intermediate to steeply sloped shelves, the offshore liftoff distance varies linearly with $F_{f}-1$, a particularly simple scaling given the nonlinearity and relative complexity of the governing equations. The model and experimental results support a conceptual description of the river–ocean interface that relates the liftoff location, free-surface elevation and the spreading rate of the buoyant river plume.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3