Hydroelasticity and nonlinearity in the interaction between water waves and an elastic wall

Author:

Akrish GalORCID,Rabinovitch Oded,Agnon Yehuda

Abstract

The present study investigates the role of hydroelasticity and nonlinearity in the fundamental problem of the interaction between non-breaking water waves and an elastic wall. To this end, two interaction scenarios are considered: the interaction of a rigid wall supported by springs and a pulse-type wave, and the interaction of an elastic deformable wall and an incident wave group. Both of these scenarios are numerically simulated in a computational domain representing a two-dimensional wave flume. The simplicity of the domain enables one to perform highly efficient simulations using the high-order spectral method (HOSM). Wave generation at the flume entrance and the wave–wall interaction at the flume end are simulated by means of the additional potential concept. In this way, the efficiency that characterizes the original HOSM is preserved for the present non-periodic problems. The investigation of the first scenario reveals the influence of the wall’s dynamical response on the hydrodynamic values. The results show that the maximum wave run-up and wave force are prominently fluctuating around the values corresponding to a fixed wall as a function of the wall’s eigenfrequency, revealing regions of relaxation and amplification. The second scenario studies the effect of the nonlinear evolution of the incident wave group. The high-order wave harmonics generated during the group evolution are found to be significant for predicting extreme hydrodynamic and structural values, and may result in resonant interactions in which hydroelasticity appears to play an important role.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3