On new scaling laws in a temporally evolving turbulent plane jet using Lie symmetry analysis and direct numerical simulation

Author:

Sadeghi H.ORCID,Oberlack M.,Gauding M.

Abstract

A temporally evolving turbulent plane jet is studied both by direct numerical simulation (DNS) and Lie symmetry analysis. The DNS is based on a high-order scheme to solve the Navier–Stokes equations for an incompressible fluid. Computations were conducted at Reynolds number $\mathit{Re}_{0}=8000$, where $\mathit{Re}_{0}$ is defined based on the initial jet thickness, $\unicode[STIX]{x1D6FF}_{0.5}(0)$, and the initial centreline velocity, $\overline{U}_{1}(0)$. A symmetry approach, known as the Lie group, is used to find symmetry transformations, and, in turn, group invariant solutions, which are also denoted as scaling laws in turbulence. This approach, which has been extensively developed to create analytical solutions of differential equations, is presently applied to the mean momentum and two-point correlation equations in a temporally evolving turbulent plane jet. The symmetry analysis of these equations allows us to derive new invariant (self-similar) solutions for the mean flow and higher moments of the velocities in the jet flow. The current DNS validates the consequence of Lie symmetry analysis and therefore confirms the establishment of novel scaling laws in turbulence. It is shown that the classical scaling law for the mean velocity is a specific form of the current scaling (which has a more general form); however, the scaling for the second and higher moments (such as Reynolds stresses) has a completely different structure compared to the classical scaling. While the failure of the classical scaling for the second moments of the fluctuating velocities has been noted from the jet data for many years, the DNS results nicely match with the present self-similar relations derived from Lie symmetry analysis. Key ingredients for the present results, in particular for the scaling laws of the higher moments, are symmetries, which are of a purely statistical nature. i.e. these symmetries are admitted by the moment equations, however, they are not observed by the original Navier–Stokes equations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3