Flow around an inclined circular disk

Author:

Gao Song,Tao Longbin,Tian XinliangORCID,Yang Jianmin

Abstract

Direct numerical simulations are performed for the uniform flow around an inclined circular disk. The diameter–thickness aspect ratio ($\unicode[STIX]{x1D712}=D/t_{d}$) of the disk is 50 and the inclination angle ($\unicode[STIX]{x1D6FC}$) is considered over the range of $0^{\circ }\leqslant \unicode[STIX]{x1D6FC}\leqslant 80^{\circ }$, where $\unicode[STIX]{x1D6FC}=0^{\circ }$ refers to the condition where the flow is normal to the disk. The Reynolds number ($\mathit{Re}$), based on the short axis of projection in the streamwise direction, is defined as $\mathit{Re}=U_{\infty }D\cos \unicode[STIX]{x1D6FC}/\unicode[STIX]{x1D708}$, where $U_{\infty }$ is the velocity of the flow and $\unicode[STIX]{x1D708}$ is the kinematic viscosity. $\mathit{Re}$ is investigated over the range of 50 ${\leqslant}\mathit{Re}\leqslant$ 300. In the considered $\mathit{Re}$$\unicode[STIX]{x1D6FC}$ parametric space, five states are observed and denoted as: (I) steady state (SS); (II) periodic state (PS); (III) periodic state with a low frequency modulation (PSL); (IV) quasi-periodic state (QP) and (V) chaotic state (CS). Both $\mathit{Re}$ and $\unicode[STIX]{x1D6FC}$ affect the bifurcation mechanism. The bifurcating sequence occurring at $\unicode[STIX]{x1D6FC}=0^{\circ }$ is generally observed over the whole $\mathit{Re}$$\unicode[STIX]{x1D6FC}$ space, although it is advanced at small $\unicode[STIX]{x1D6FC}$ and delayed at large $\unicode[STIX]{x1D6FC}$. The advancement of thresholds for different states is due to the effects introduced by inclination, which tend to select the plane of symmetry for the wake in order to regulate the wake and intensify some flow features. Nevertheless, the bifurcations are still in the dominant position when leading a state without stable symmetry, i.e. the planar symmetry could not be recovered by small $\unicode[STIX]{x1D6FC}$. These phenomena are further discussed with respect to the vortex shedding patterns behind the disk. Furthermore, for any fixed disk, the wake behaviour is only associated with that found in the steady vertical state of a freely falling disk. The fully coupled fluid–body system is fundamentally different from the fixed cases.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3