The influence of the chemical composition representation according to the number of species during mixing in high-pressure turbulent flows

Author:

Sciacovelli LucaORCID,Bellan JosetteORCID

Abstract

Mixing of several species in high-pressure (high-$p$) turbulent flows is investigated to understand the influence of the number of species on the flow characteristics. Direct numerical simulations are conducted in the temporal mixing layer configuration at approximately the same value of the momentum ratio for all realizations. The simulations are performed with mixtures of two, three, five and seven species to address various compositions at fixed number of species, at three values of initial vorticity-thickness-based Reynolds number, $Re_{0}$, and two values of the free-stream pressure, $p_{0}$, which is supercritical for each species except water. The major species are C7H16, O2 and N2, and the minor species are CO, CO2, H2 and H2O. The extensive database thus obtained allows the study of the influence not only of $Re_{0}$ and $p_{0}$, but also of the initial density ratio and of the initial density difference between streams, $\unicode[STIX]{x0394}\unicode[STIX]{x1D70C}$. The results show that the layer growth is practically insensitive to all of the above parameters; however, global vortical aspects increase with $Re_{0},p_{0}$ and the number of species; nevertheless, at the same $Re_{0},p_{0}$ and density ratio, vorticity aspects are not influenced by the number of species. Species mixing produces strong density gradients which increase with $p_{0}$ and otherwise scale with $\unicode[STIX]{x0394}\unicode[STIX]{x1D70C}$ but, when scaled by $\unicode[STIX]{x0394}\unicode[STIX]{x1D70C}$, are not affected by the number of species. Generalized Korteweg-type equations are developed for a multi-species mixture, and a priori estimates based on the largest density gradient show that the Korteweg stresses, which account for the influence of the density gradient, have negligible contribution in the momentum equation. The species-specific effective Schmidt number, $Sc_{\unicode[STIX]{x1D6FC},\mathit{eff}}$, is computed and it is found that negative values occur for all minor species – particularly for H2 – thus indicating uphill diffusion, while the major species experience only regular diffusion. The probability density function (p.d.f.) of $Sc_{\unicode[STIX]{x1D6FC},\mathit{eff}}$ shows strong variation with $p_{0}$ but weak dependence on the number of species; however, the p.d.f. substantially varies with the identity of the species. In contrast, the p.d.f. of the effective Prandtl number indicates dependence on both $p_{0}$ and the number of species. Similar to $Sc_{\unicode[STIX]{x1D6FC},\mathit{eff}}$, the species-specific effective Lewis-number p.d.f. depends on the species, and for all species the mean is smaller than unity, thus invalidating one of the most popular assumptions in combustion modelling. Simplifying the mixture composition by reducing the number of minor species does not affect the crucial species–temperature relationship of the major species that, for accuracy, must be retained in combustion simulations, but this relationship is affected for the minor species and in regions of uphill diffusion, indicating that the reduction is nonlinear in nature.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3