Integral properties of turbulent-kinetic-energy production and dissipation in turbulent wall-bounded flows

Author:

Wei TieORCID

Abstract

Turbulent-kinetic-energy (TKE) production $\mathscr{P}_{k}=R_{12}(\unicode[STIX]{x2202}U/\unicode[STIX]{x2202}y)$ and TKE dissipation $\mathscr{E}_{k}=\unicode[STIX]{x1D708}\langle (\unicode[STIX]{x2202}u_{i}/x_{k})(\unicode[STIX]{x2202}u_{i}/x_{k})\rangle$ are important quantities in the understanding and modelling of turbulent wall-bounded flows. Here $U$ is the mean velocity in the streamwise direction, $u_{i}$ or $u,v,w$ are the velocity fluctuation in the streamwise $x$- direction, wall-normal $y$- direction, and spanwise $z$-direction, respectively; $\unicode[STIX]{x1D708}$ is the kinematic viscosity; $R_{12}=-\langle uv\rangle$ is the kinematic Reynolds shear stress. Angle brackets denote Reynolds averaging. This paper investigates the integral properties of TKE production and dissipation in turbulent wall-bounded flows, including turbulent channel flows, turbulent pipe flows and zero-pressure-gradient turbulent boundary layer flows (ZPG TBL). The main findings of this work are as follows. (i) The global integral of TKE production is predicted by the RD identity derived by Renard & Deck (J. Fluid Mech., vol. 790, 2016, pp. 339–367) as $\int _{0}^{\unicode[STIX]{x1D6FF}}\mathscr{P}_{k}\,\text{d}y=U_{b}u_{\unicode[STIX]{x1D70F}}^{2}-\int _{0}^{\unicode[STIX]{x1D6FF}}\unicode[STIX]{x1D708}(\unicode[STIX]{x2202}U/\unicode[STIX]{x2202}y)^{2}\,\text{d}y$ for channel flows, where $U_{b}$ is the bulk mean velocity, $u_{\unicode[STIX]{x1D70F}}$ is the friction velocity and $\unicode[STIX]{x1D6FF}$ is the channel half-height. Using inner scaling, the identity for the global integral of the TKE production in channel flows is $\int _{0}^{\unicode[STIX]{x1D6FF}^{+}}\mathscr{P}_{k}^{+}\text{d}y^{+}=U_{b}^{+}-\int _{0}^{\unicode[STIX]{x1D6FF}^{+}}(\unicode[STIX]{x2202}U^{+}/\unicode[STIX]{x2202}y^{+})^{2}\,\text{d}y^{+}$. In the present work, superscript $+$ denotes inner scaling. At sufficiently high Reynolds number, the global integral of the TKE production in turbulent channel flows can be approximated as $\int _{0}^{\unicode[STIX]{x1D6FF}^{+}}\mathscr{P}_{k}^{+}\,\text{d}y^{+}\approx U_{b}^{+}-9.13$. (ii) At sufficiently high Reynolds number, the integrals of TKE production and dissipation are equally partitioned around the peak Reynolds shear stress location $y_{m}:\,\int _{0}^{y_{m}}\mathscr{P}_{k}\,\text{d}y\approx \int _{y_{m}}^{\unicode[STIX]{x1D6FF}}\mathscr{P}_{k}\,\text{d}y$ and $\int _{0}^{y_{m}}\mathscr{E}_{k}\,\text{d}y\approx \int _{y_{m}}^{\unicode[STIX]{x1D6FF}}\mathscr{E}_{k}\,\text{d}y$. (iii) The integral of the TKE production ${\mathcal{I}}_{\mathscr{P}_{k}}(y)=\int _{0}^{y}\mathscr{P}_{k}\,\text{d}y$ and the integral of the TKE dissipation ${\mathcal{I}}_{\mathscr{E}_{k}}(y)=\int _{0}^{y}\mathscr{E}_{k}\,\text{d}y$ exhibit a logarithmic-like layer similar to that of the mean streamwise velocity as, for example, ${\mathcal{I}}_{\mathscr{P}_{k}}^{+}(y^{+})\approx (1/\unicode[STIX]{x1D705})\ln (y^{+})+C_{\mathscr{P}}$ and ${\mathcal{I}}_{\mathscr{E}_{k}}^{+}(y^{+})\approx (1/\unicode[STIX]{x1D705})\ln (y^{+})+C_{\mathscr{E}}$, where $\unicode[STIX]{x1D705}$ is the von Kármán constant, $C_{\mathscr{P}}$ and $C_{\mathscr{E}}$ are addititve constants. The logarithmic-like scaling of the global integral of TKE production and dissipation, the equal partition of the integrals of TKE production and dissipation around the peak Reynolds shear stress location $y_{m}$ and the logarithmic-like layer in the integral of TKE production and dissipation are intimately related. It is known that the peak Reynolds shear stress location $y_{m}$ scales with a meso-length scale $l_{m}=\sqrt{\unicode[STIX]{x1D6FF}\unicode[STIX]{x1D708}/u_{\unicode[STIX]{x1D70F}}}$. The equal partition of the integral of the TKE production and dissipation around $y_{m}$ underlines the important role of the meso-length scale $l_{m}$ in the dynamics of turbulent wall-bounded flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3