Abstract
Coherent vortices with horizontal swirl arise spontaneously in the wave-driven nearshore surf zone. Here, a demonstration is made of the much greater robustness of coherent barotropic dipole vortices on a sloping beach in a 2D shallow-water model compared with fully 3D models either without or with stable density stratification. The explanation is that active vortex tilting and stretching or instability in 3D disrupt an initially barotropic dipole vortex. Without stratification in 3D, the vorticity retains a dipole envelope structure but is internally fragmented. With stratification in 3D, the disrupted vortex reforms as a coherent but weaker surface-intensified baroclinic dipole vortex. An implication is that barotropic or depth-integrated dynamical models of the wave-driven surf zone misrepresent an important aspect of surf-eddy behaviour.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献