Asymptotic scaling laws and semi-similarity solutions for a finite-source spherical blast wave

Author:

Ling Y.ORCID,Balachandar S.ORCID

Abstract

A spherical blast wave generated by a sudden release of a sphere of compressed gas is an important model problem to understand blast phenomena such as volcanic eruptions and explosive detonations. The resulting explosion flow physics, such as the instability at the gas contact discontinuity and the interaction between the shock wave and the gas contact, are dictated by the initial pressure and sound-speed ratios between the compressed gas and the ambience. Since the initial pressure and sound-speed ratios vary over a wide range in practical applications, it is of interest to investigate the scaling laws and similarity solutions for the spherical symmetric explosion flow. In the present study, numerical simulation of a spherical blast wave is performed. A long-term length scale that incorporates the initial charge radius and the initial pressure ratio is introduced. The trajectories of the main shock normalized by the long-term length scale for a wide range of parameters collapse after a short transition time, indicating an asymptotic similarity solution exists for the far field in the long term. With the assistance of this similarity solution, the full evolution of the main shock can be obtained semi-analytically. For near-field features, i.e. the gas contact and the secondary shock wave, only semi-similarity solutions are observed, which depend on the initial sound-speed ratio but not the initial pressure ratio. The gas contact and the secondary shock share the same scaling relations. Asymptotic analysis is performed to obtain the short-term dynamics of the gas contact, including the gas contact acceleration and the Atwood number, which are the key parameters determining the Rayleigh–Taylor instability development at the gas contact. The asymptotic contact radius as $t\rightarrow \infty$ is also obtained, which is found to be well represented by the long-term length scale and thus only depends on the initial pressure ratio. A simple model of an oscillating bubble is employed to explain the scaling relation of the asymptotic gas contact radius.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3