On the scaling of propagation of periodically generated vortex rings

Author:

Asadi H.,Asgharzadeh H.,Borazjani I.ORCID

Abstract

The propagation of periodically generated vortex rings (period $T$) is numerically investigated by imposing pulsed jets of velocity $U_{jet}$ and duration $T_{s}$ (no flow between pulses) at the inlet of a cylinder of diameter $D$ exiting into a tank. Because of the step-like nature of pulsed jet waveforms, the average jet velocity during a cycle is $U_{ave}=U_{jet}T_{s}/T$. By using $U_{ave}$ in the definition of the Reynolds number ($Re=U_{ave}D/\unicode[STIX]{x1D708}$, $\unicode[STIX]{x1D708}$: kinematic viscosity of fluid) and non-dimensional period ($T^{\ast }=TU_{ave}/D=T_{s}U_{jet}/D$, i.e. equivalent to formation time), then based on the results, the vortex ring velocity $U_{v}/U_{jet}$ becomes approximately independent of the stroke ratio $T_{s}/T$. The results also show that $U_{v}/U_{jet}$ increases by reducing $Re$ or increasing $T^{\ast }$ (more sensitive to $T^{\ast }$) according to a power law of the form $U_{v}/U_{jet}=0.27T^{\ast 1.31Re^{-0.2}}$. An empirical relation, therefore, for the location of vortex ring core centres ($S$) over time ($t$) is proposed ($S/D=0.27T^{\ast 1+1.31Re^{-0.2}}t/T_{s}$), which collapses (scales) not only our results but also the results of experiments for non-periodic rings. This might be due to the fact that the quasi-steady vortex ring velocity was found to have a maximum of 15 % difference with the initial (isolated) one. Visualizing the rings during the periodic state shows that at low $T^{\ast }\leqslant 2$ and high $Re\geqslant 1400$ here, the stopping vortices become unstable and form hairpin vortices around the leading ones. However, by increasing $T^{\ast }$ or decreasing $Re$ the stopping vortices remain circular. Furthermore, rings with short $T^{\ast }=1$ show vortex pairing after approximately one period in the downstream, but higher $T^{\ast }\geqslant 2$ generates a train of vortices in the quasi-steady state.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3