Vibrations of a square cylinder submerged in a wake

Author:

Bhatt Rajesh,Alam Md. MahbubORCID

Abstract

A numerical investigation is conducted on the flow around and vibration response of an elastic square cylinder (side width $D$) in the wake of a stationary cylinder at Reynolds numbers of $Re=100$ and 200 based on $D$ and the free-stream velocity. The downstream cylinder, referred to as the wake cylinder, is allowed to vibrate in the transverse direction only. The reduced velocity $U_{r}$ is varied from 1 to 30. Cylinder centre-to-centre spacing ratios of $L^{\ast }(=L/D)=2$ and 6 are considered. Simulations are also conducted for a single isolated cylinder, and the results are compared with those for the wake cylinder. The focus is given to vibration response, frequency response, fluctuating lift force, phase relationship between the lift and displacement, work done and the flow structure modification during the cylinder vibration. The results reveal that the dependence of the Strouhal number $St$ on $U_{r}$ can distinguish different branches more appropriately than that of the vibration amplitude on $U_{r}$. The vibration response of the single cylinder at $Re=100$ is characterized by the initial, lower and desynchronization branches. On the other hand, that at $Re=200$ undergoes initial, lower and galloping branches. The galloping involves the characteristics of both the initial and the lower branches or the initial and the desynchronization branches depending on $U_{r}$. For the wake cylinder, the gap flow has a significant impact on the vibration response, leading to (i) the absence of galloping at either $Re$ and $L^{\ast }$, (ii) the presence of an upper branch at $Re=200$, $L^{\ast }=6$ and (iii) an initial branch of different characteristics at $Re=100$, $L^{\ast }=6$. The different facets are discussed in terms of wake structures, work done and phase lag between lift and displacement.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3