A hydrodynamic analysis of self-similar radiative ablation flows

Author:

Clarisse J.-M.ORCID,Pfister J.-L.,Gauthier S.,Boudesocque-Dubois C.

Abstract

Self-similar solutions to the compressible Euler equations with nonlinear conduction are considered as particular instances of unsteady radiative deflagration – or ‘ablation’ – waves with the goal of characterizing the actual hydrodynamic properties that such flows may present. The chosen family of solutions, corresponding to the ablation of an initially quiescent perfectly cold and homogeneous semi-infinite slab of inviscid compressible gas under the action of increasing external pressures and radiation fluxes, is well suited to the description of the early ablation of a target by gas-filled cavity X-rays in experiments of high energy density physics. These solutions are presently computed by means of a highly accurate numerical method for the radiative conduction model of a fully ionized plasma under the approximation of a non-isothermal leading shock wave. The resulting set of solutions is unique for its high fidelity description of the flows down to their finest scales and its extensive exploration of external pressure and radiative flux ranges. Two different dimensionless formulations of the equations of motion are put forth, yielding two classifications of these solutions which are used for carrying out a quantitative hydrodynamic analysis of the corresponding flows. Based on the main flow characteristic lengths and on standard characteristic numbers (Mach, Péclet, stratification and Froude numbers), this analysis points out the compressibility and inhomogeneity of the present ablative waves. This compressibility is further analysed to be too high, whether in terms of flow speed or stratification, for the low Mach number approximation, often used in hydrodynamic stability analyses of ablation fronts in inertial confinement fusion (ICF), to be relevant for describing these waves, and more specifically those with fast expansions which are of interest in ICF. Temperature stratification is also shown to induce, through the nonlinear conductivity, supersonic upstream propagation of heat-flux waves, besides a modified propagation of quasi-isothermal acoustic waves, in the flow conduction regions. This description significantly departs from the commonly admitted depiction of a quasi-isothermal conduction region where wave propagation is exclusively ascribed to isothermal acoustics and temperature fluctuations are only diffused.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference50 articles.

1. Review of the National Ignition Campaign 2009-2012

2. Full self-similar solutions of the subsonic radiative heat equations

3. Boudesocque-Dubois, C. 2000 Perturbations linéaires d’une solution autosemblable de l’hydrodynamique avec conduction non linéaire. PhD thesis, Université Pierre et Marie Curie/Paris 6.

4. Deflagration Waves Supported by Thermal Radiation

5. The Physics of Inertial Fusion

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3