Machine learning the kinematics of spherical particles in fluid flows

Author:

Wan Zhong Yi,Sapsis Themistoklis P.ORCID

Abstract

Numerous efforts have been devoted to the derivation of equations describing the kinematics of finite-size spherical particles in arbitrary fluid flows. These approaches rely on asymptotic arguments to obtain a description of the particle motion in terms of a slow manifold. Here we present a novel approach that results in kinematic models with unprecedented accuracy compared with traditional methods. We apply a recently developed machine learning framework that relies on (i) an imperfect model, obtained through analytical arguments, and (ii) a long short-term memory recurrent neural network. The latter learns the mismatch between the analytical model and the exact velocity of the finite-size particle as a function of the fluid velocity that the particle has encountered along its trajectory. We show that training the model for one flow is sufficient to generate accurate predictions for any other arbitrary flow field. In particular, using as an exact model for trajectories of spherical particles, the Maxey–Riley equation, we first train the proposed machine learning framework using trajectories from a cellular flow. We are then able to accurately reproduce the trajectories of particles having the same inertial parameters for completely different fluid flows: the von Kármán vortex street as well as a two-dimensional turbulent fluid flow. For the second example we also demonstrate that the machine learned kinematic model successfully captures the spectrum of the particle velocity, as well as the extreme event statistics. The proposed scheme paves the way for machine learning kinematic models for bubbles and aerosols using high-fidelity DNS simulations and experiments.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3