Temperatures produced by inertially collapsing bubbles near rigid surfaces

Author:

Beig S. A.ORCID,Aboulhasanzadeh B.,Johnsen E.ORCID

Abstract

The dynamics of bubbles inertially collapsing in water near solid objects have been the subject of numerous studies in the context of cavitation erosion. While non-spherical bubble collapse, re-entrant jet dynamics and emitted shock waves have received significant interest, less is known about the temperatures thereby produced and their possible connection to damage. In this article, we use highly resolved numerical simulations of a single bubble inertially collapsing near a rigid surface to measure the temperatures produced in the fluid and estimate those in the solid, as well as to identify the responsible mechanisms. In particular, we find that elevated temperatures along the wall can be produced by one of two mechanisms, depending on the initial stand-off distance of the bubble from the wall and the driving pressure: for bubbles initially far from the wall, the shock generated by the bubble collapse is the source of the high temperature, while bubbles starting initially closer migrate towards the wall and eventually come into contact with it. A scaling is introduced to describe the maximum fluid temperature along the wall as a function of the initial stand-off distance and driving pressure. To predict the temperature of the solid, we develop a semianalytical heat transfer model, which supports recent experimental observations that elevated temperatures achieved during collapse could play a role in cavitation damage to soft heat-sensitive materials.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3