Vortex formation on surging aerofoils with application to reverse flow modelling

Author:

Kirk Philip B.,Jones Anya R.ORCID

Abstract

The leading-edge vortex (LEV) is a powerful unsteady flow structure that can result in significant unsteady loads on lifting blades and wings. Using force, surface pressure and flow field measurements, this work represents an experimental campaign to characterize LEV behaviour in sinusoidally surging flows with widely varying amplitudes and frequencies. Additional tests were conducted in reverse flow surge, with kinematics similar to the tangential velocity profile seen by a blade element in recent high-advance-ratio rotor experiments. General results demonstrate the variability of LEV convection properties with reduced frequency, which greatly affected the average lift-to-drag ratio in a cycle. Analysis of surface pressure measurements suggests that LEV convection speed is a function only of the local instantaneous flow velocity. In the rotor-comparison tests, LEVs formed in reverse flow surge were found to convect more quickly than the corresponding reverse flow LEVs that form on a high-advance-ratio rotor, demonstrating that rotary motion has a stabilizing effect on LEVs. The reverse flow surging LEVs were also found to be of comparable strength to those observed on the high-advance-ratio rotor, leading to the conclusion that a surging-wing simplification might provide a suitable basis for low-order models of much more complex three-dimensional flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3