Dynamics of water entry

Author:

Vincent Lionel,Xiao Tingben,Yohann Daniel,Jung SunghwanORCID,Kanso EvaORCID

Abstract

Diving induces large pressure during water entry accompanied by the creation of cavity and water splash ejected from the free water surface. To minimize impact forces, divers streamline their shape at impact. Here, we investigate the impact forces and splash evolution of wedges entering water as a function of the wedge opening angle. A gradual transition from impactful to smooth entry is observed as the wedge angle decreases. After submersion, the wedge experiences significantly smaller drag forces (two-fold smaller) than immersed wedges. Our experimental findings compare favourably with existing force models upon the introduction of empirically based corrections. We experimentally characterize the shapes of the cavity and splash created by the wedge and find that they are independent of the entry velocity at short times, but that the splash exhibits distinct variations in shape at later times. We propose a one-dimensional model of the splash that takes into account gravity, surface tension and aerodynamic forces. The model shows, in conjunction with experimental data, that the splash shape is dominated by the interplay between a destabilizing Venturi-suction force due to air rushing between the splash and the water surface and a stabilizing force due to surface tension. Taken together, these findings could direct future research aimed at understanding and combining the mechanisms underlying all stages of water entry in application to engineering and bio-related problems, including naval engineering, disease spreading or platform diving.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3