Abstract
A heavy-over-light configuration of a fluid bilayer may be stabilized in the presence of a phase change if the system consists of a single component. However, if the fluid is composed of a binary mixture with the more volatile component having the lower surface tension, it is known that a Marangoni instability occurs. This instability owes its origin to concentration gradients created by the phase change, even though the phase change otherwise has a stabilizing effect. In this study, it is shown via a nonlinear model under a long-wavelength approximation, that this Marangoni destabilization is insufficient to cause a rupture of the interface under practical operating conditions. Computations reveal that the stabilizing effect of the phase change dominates as the film becomes thin by reversing the direction of the Marangoni flow, thereby halting the instability and any hope of rupture.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献