On universal features of the turbulent cascade in terms of non-equilibrium thermodynamics

Author:

Reinke Nico,Fuchs André,Nickelsen Daniel,Peinke JoachimORCID

Abstract

Features of the turbulent cascade are investigated for various datasets from three different turbulent flows, namely free jets as well as wake flows of a regular grid and a cylinder. The analysis is focused on the question as to whether fully developed turbulent flows show universal small-scale features. Two approaches are used to answer this question. First, two-point statistics, namely structure functions of longitudinal velocity increments, and, second, joint multiscale statistics of these velocity increments are analysed. The joint multiscale characterisation encompasses the whole cascade in one joint probability density function. On the basis of the datasets, evidence of the Markov property for the turbulent cascade is shown, which corresponds to a three-point closure that reduces the joint multiscale statistics to simple conditional probability density functions (cPDFs). The cPDFs are described by the Fokker–Planck equation in scale and its Kramers–Moyal coefficients (KMCs). The KMCs are obtained by a self-consistent optimisation procedure from the measured data and result in a Fokker–Planck equation for each dataset. Knowledge of these stochastic cascade equations enables one to make use of the concepts of non-equilibrium thermodynamics and thus to determine the entropy production along individual cascade trajectories. In addition to this new concept, it is shown that the local entropy production is nearly perfectly balanced for all datasets by the integral fluctuation theorem (IFT). Thus, the validity of the IFT can be taken as a new law of the turbulent cascade and at the same time independently confirms that the physics of the turbulent cascade is a memoryless Markov process in scale. The IFT is taken as a new tool to prove the optimal functional form of the Fokker–Planck equations and subsequently to investigate the question of universality of small-scale turbulence in the datasets. The results of our analysis show that the turbulent cascade contains universal and non-universal features. We identify small-scale intermittency as a universality breaking feature. We conclude that specific turbulent flows have their own particular multiscale cascades, in other words, their own stochastic fingerprints.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3