Aeroacoustics of a rotor ingesting a planar boundary layer at high thrust

Author:

Murray Henry H.ORCID,Devenport William J.,Alexander W. Nathan,Glegg Stewart A. L.,Wisda David

Abstract

Aeroacoustic measurements and analysis have been made for an unshrouded rotor partially immersed in a planar equilibrium turbulent boundary layer at low Mach number. This configuration provides an idealized model of inflow distortion effects seen when a rotor is mounted adjacent to the hull or fuselage of a vehicle. At low and moderate thrust conditions, the rotor produces broadband noise organized into haystacks produced by large eddies of the ingested turbulence being cut multiple times by successive rotor blades. At high thrust, however, the acoustic signature changes and becomes louder and more tonal. This change is accompanied by separation of the boundary layer from the wall in the vicinity of the rotor blade disk. The separation region is highly unsteady and populated by intense vortex structures. Acoustic analysis suggests that blade–vortex interactions with these structures are the source of the additional tonal noise at high thrust.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measurement, signal processing, and uncertainty;Aeroacoustics of Low Mach Number Flows;2024

2. Aeroacoustic testing and instrumentation;Aeroacoustics of Low Mach Number Flows;2024

3. Experimental and numerical investigations on rotor noise in axial descending flight;Physical Review Fluids;2023-09-28

4. A multivariate statistical analysis of the noise emitted by an installed propeller;Journal of Physics: Conference Series;2023-09-01

5. Interactions of Propellers in Edgewise Flight with Turbulence;AIAA AVIATION 2023 Forum;2023-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3