Hydrodynamics of flexible fins propelled in tandem, diagonal, triangular and diamond configurations

Author:

Park Sung Goon,Sung Hyung JinORCID

Abstract

A fish may gain hydrodynamic benefits from being a member of a school. Inspired by fish schools, a two-dimensional simulation was performed for flexible fins propelled in tandem, diagonal, triangular and diamond configurations. The flow-mediated interactions between the flexible fins were analysed by using an immersed boundary method. A transverse heaving motion was prescribed on the leading edge of each fin, and other posterior parts passively adapted to the surrounding fluid as a result of the fluid–flexible-body interaction. The flexible fins were allowed to actively adjust their relative positions in the horizontal direction. The four basic stable configurations are spontaneously formed and self-sustained purely by the vortex–vortex and vortex–body interactions. The hydrodynamic benefits depend greatly on the local positions of the members. For the same heaving motion prescribed on the leading edge, the input power of the following fin in the stable tandem and diagonal configurations is lower by 14 % and 6 %, respectively, than that of the leading fin. The following fin in the diagonal formation can keep pace with the leading fin even for reduced heaving amplitudes because of the help of the leader via their shared fluid environment, where its required input power is reduced by 21 %. The heaving amplitudes of the trailing fins are reduced to optimize the propulsive efficiency, and the average efficiencies in the triangular and diamond configurations increase by up to 14 % and 19 %, respectively, over that of the isolated swimmer. The propulsive efficiencies are enhanced by 22 % for the fins in the second row and by 36 % for the fin in the third row by decreasing the heaving amplitude in the diamond formation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3