Influence of plane boundary proximity on the Honji instability

Author:

Xiong ChengwangORCID,Cheng Liang,Tong FeifeiORCID,An HongweiORCID

Abstract

This paper presents a numerical investigation of oscillatory flow around a circular cylinder that is placed in proximity to a plane boundary that is parallel to the cylinder axis. The onset and development of the Honji instability are studied over a range of Stokes numbers ($\unicode[STIX]{x1D6FD}$) and gap-to-diameter ratios ($e/D$) at a fixed Keulegan–Carpenter number ($KC=2$). Four flow regimes are identified in the ($e/D,\unicode[STIX]{x1D6FD}$)-plane: (I) featureless two-dimensional flow, (II) stable Honji vortex, (III) unstable Honji vortex and (IV) chaotic flow. As $e/D$ increases from $-0.5$ (embedment) to $1$, the critical Stokes number $\unicode[STIX]{x1D6FD}_{cr}$ for the onset of the Honji instability follows two side-by-side convex functions, peaking at the connection point of $e/D=0.125$ and reaching troughs at $e/D=0$ and 0.375. The Honji instability is always initiated on the gap side of the cylinder surface for $0.375\leqslant e/D\leqslant 2$ and occurs only on the top side for $-0.5\leqslant e/D<0.125$. The location for the initiation of the Honji instability switches from the gap side to the top side of the cylinder surface for $0.125<e/D<0.375$. No Honji instability is observed at $e/D=0.125$, where the flow three-dimensionality is developed through a different flow mechanism. Consistently, the three-dimensional kinetic energy of the flow, which represents a measure of the strength of flow three-dimensionality, varies with $e/D$ in a trend opposite to that of $\unicode[STIX]{x1D6FD}_{cr}$. Three physical mechanisms are identified as being responsible for the observed variation trend of $\unicode[STIX]{x1D6FD}_{cr}$ with $e/D$ and for various flow phenomena, which are the blockage effect induced by the geometry setting, the existence of the Stokes layer on the plane boundary and the favourable pressure gradient in the flow direction over the gap between the cylinder and the plane surface.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3