Strato-rotational instability without resonance

Author:

Wang ChenORCID,Balmforth Neil J.ORCID

Abstract

Strato-rotational instability (SRI) is normally interpreted as the resonant interactions between normal modes of the internal or Kelvin variety in three-dimensional settings in which the stratification and rotation are orthogonal to both the background flow and its shear. Using a combination of asymptotic analysis and numerical solution of the linear eigenvalue problem for plane Couette flow, it is shown that such resonant interactions can be destroyed by certain singular critical levels. These levels are not classical critical levels, where the phase speed $c$ of a normal mode matches the mean flow speed $U$, but are a different type of singularity where $(c-U)$ matches a characteristic gravity-wave speed $\pm N/k$, based on the buoyancy frequency $N$ and streamwise horizontal wavenumber $k$. Instead, it is shown that a variant of SRI can occur due to the coupling of a Kelvin or internal wave to such ‘baroclinic’ critical levels. Two characteristic situations are identified and explored, and the conservation law for pseudo-momentum is used to rationalize the physical mechanism of instability. The critical level coupling removes the requirement for resonance near specific wavenumbers $k$, resulting in an extensive continuous band of unstable modes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear stability of stratified, rotating, viscous plane Couette–Poiseuille flow;Journal of Fluid Mechanics;2024-07-25

2. A parameter study of strato-rotational low-frequency modulations: impacts on momentum transfer and energy distribution;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-13

3. An analytical study of the MHD clamshell instability on a sphere;Journal of Fluid Mechanics;2022-12-15

4. Critical-layer instability of shallow-water magnetohydrodynamic shear flows;Journal of Fluid Mechanics;2022-06-13

5. Inertio–elastic instability of a vortex column;Journal of Fluid Mechanics;2022-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3