Abstract
We demonstrate that, if a globally smooth virtual circulation-preserving velocity exists, Kelvin’s and Helmholtz’s theorems can be extended to some non-ideal flows which are viscous, baroclinic or with non-conservative body forces. Then we track vortex surfaces frozen in the virtual velocity in the non-ideal flows, based on the evolution of a vortex-surface field (VSF). For a flow with a viscous-like diffusion term normal to the vorticity, we obtain an explicit virtual velocity to accurately track vortex surfaces in time. This modified flow is dissipative but prohibits reconnection of vortex lines. If a globally smooth virtual velocity does not exist, an approximate virtual velocity can still facilitate the tracking of vortex surfaces in non-ideal flows. In a magnetohydrodynamic Taylor–Green flow, we find that the conservation of vorticity flux is significantly improved in the VSF evolution convected by the approximate virtual velocity instead of the physical velocity, and the spurious vortex deformation induced by the Lorentz force is eliminated.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献