The shape evolution of liquid droplets in miscible environments

Author:

Walls Daniel J.ORCID,Meiburg EckartORCID,Fuller Gerald G.

Abstract

Miscible liquids often come into contact with one another in natural and technological situations, commonly as a drop of one liquid present in a second, miscible liquid. The shape of a liquid droplet present in a miscible environment evolves spontaneously in time, in a distinctly different fashion than drops present in immiscible environments, which have been reported previously. We consider drops of two classical types, pendant and sessile, in building upon our prior work with miscible systems. Here we present experimental findings of the shape evolution of pendant drops along with an expanded study of the spreading of sessile drops in miscible environments. We develop scalings considering the diffusion of mass to group volumetric data of the evolving pendant drops and the diffusion of momentum to group leading-edge radial data of the spreading sessile drops. These treatments are effective in obtaining single responses for the measurements of each type of droplet, where the volume of a pendant drop diminishes exponentially in time and the leading-edge radius of a sessile drop grows following a power law of $t^{1/2}$ at long times. A complementary numerical approach to compute the concentration and velocity fields of these systems using a simplified set of governing equations is paired with our experimental findings.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference44 articles.

1. The dynamics of the spreading of liquids on a solid surface. Part 2. Surfactants

2. Development of an interferometer for measurement of the diffusion coefficient of miscible liquids

3. The spreading of silicone oil drops on horizontal surfaces;Tanner;J. Phys. D,1979

4. Fluid dynamics of two miscible liquids with diffusion and gradient stresses;Joseph;Eur. J. Mech. (B/Fluids),1990

5. The viscous spreading of plane and axisymmetric gravity currents

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3