Vortex–wave interaction arrays: a sustaining mechanism for the log layer?

Author:

Hall PhilipORCID

Abstract

Vortex–wave interaction theory is used to describe new kinds of localised and distributed exact coherent structures. Starting with a localised vortex–wave interaction state driven by a single inviscid wave, regular arrays of interacting vortex–wave states are investigated. In the first instance the arrays described are operational in an infinite uniform shear flow; we refer to them as ‘uniform shear vortex–wave arrays’. The basic form of the interaction remains identical to the canonical one found by Hall & Smith (J. Fluid Mech., vol. 227, 1991, pp. 641–666) and subsequently used to describe exact coherent structures by Hall & Sherwin (J. Fluid Mech., vol. 661, 2010, pp. 178–205). Thus in each cell of a vortex–wave array a roll stress jump is induced across the critical layer of an inviscid wave riding on the streak part of the flow. The theory is extended to arbitrary shear flows using a nonlinear Wentzel–Kramers–Brillouin–Jeffreys or ray theory approach with the wave–roll–streak field operating on a shorter length scale than the mean flow. The evolution equation governing the slow dynamics of the interaction turns out to be a modified form of the well-known mean equation for a turbulent flow, and its particular form can be interpreted as a ‘closure’ between the small and large scales of the flow. If the array structure is taken to be universal, in the sense that it applies to arbitrary shear flows, then the array takes on a form which supports a logarithmic mean velocity profile trapped between what can be identified with the ‘wake region’ and a ‘buffer layer’ well known in the context of wall-bounded turbulent flows. The many similarities between the distributed structures described and wall-bounded turbulence suggest that vortex–wave arrays might be involved in the self-sustaining process supporting the log layer. The modification of the mean profile within each cell of the array leads to ‘staircase’-like streamwise velocity profiles similar to those observed experimentally in turbulent flows. The wave field supporting the ‘staircase’ is concentrated in critical layers which can be associated with the shear layer structures that have been attributed by experimentalists to be the mechanism supporting the uniform-momentum zones of the staircase.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3