Squirming motion in a Brinkman medium

Author:

Nganguia Herve,Pak On Shun

Abstract

Micro-organisms encounter heterogeneous viscous environments consisting of networks of obstacles embedded in a viscous fluid medium. In this paper we analyse the characteristics of swimming in a porous medium modelled by the Brinkman equation via a spherical squirmer model. The idealized geometry allows an analytical and exact solution of the flow surrounding a squirmer. The propulsion speed obtained agrees with previous results using the Lorentz reciprocal theorem. Our analysis extends these results to calculate the power dissipation and hence the swimming efficiency of the squirmer in a Brinkman medium. The analytical solution enables a systematic analysis of the structure of the flow surrounding the squirmer, which can be represented in terms of singularities in Brinkman flows. We also discuss the spatial decay of flows due to squirming motion in a Brinkman medium in comparison with the decay in a purely viscous fluid. The results lay the foundation for subsequent studies on hydrodynamic interactions, nutrient transport and uptake by micro-organisms in heterogeneous viscous environments.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Propulsion of a three-sphere microrobot in a porous medium;Physical Review E;2024-06-13

2. Impact of Couple Stresses on Slow Rotation of a Slip Sphere: Brinkman’s Medium;International Journal of Applied and Computational Mathematics;2024-05-22

3. The effect of particle geometry on squirming in a heterogeneous medium;Journal of Fluid Mechanics;2024-05-03

4. Ciliary propulsion through non-uniform flows;Journal of Fluid Mechanics;2024-05-02

5. Recent progress in self-propelled particles;Journal of Hydrodynamics;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3