Rough or wiggly? Membrane topology and morphology for fouling control

Author:

Ling BowenORCID,Battiato IleniaORCID

Abstract

During filtration in reverse osmosis membranes (ROM), the system performance is dramatically affected by membrane fouling which causes a significant decrease in permeate flux as well as an increase in the energy input required to operate the system. In this work, we develop a model, able to dynamically capture foulant evolution, that couples the transient Navier–Stokes and the advection–diffusion equations, with an adsorption–desorption equation for the foulant accumulation. The model is validated against unsteady measurements of permeate flux as well as steady-state spatial fouling patterns. For a straight channel, we derive a universal scaling relationship between the Sherwood and Bejan numbers, i.e. the dimensionless permeate flux through the membrane and the pressure drop along the channel, respectively, and generalize this result to membranes subject to morphological and/or topological modifications, i.e. whose shape (wiggliness) or surface roughness is altered from the rectangular and flat reference case. We demonstrate that a universal scaling can be identified through the definition of a modified Reynolds number, $Re^{\star }$, that accounts for the additional length scales introduced by the membrane modifications, and a membrane performance index, $\unicode[STIX]{x1D709}$, an aggregate efficiency measure with respect to both clean permeate flux and energy input required to operate the system. Our numerical simulations demonstrate that ‘wiggly’ membranes outperform ‘rough’ membranes for smaller values of $Re^{\star }$, while the trend is reversed at higher $Re^{\star }$. The proposed approach is able to quantitatively investigate, optimize and guide the design of both morphologically and topologically altered membranes under the same framework, while providing insights into the physical mechanisms controlling the overall system performance.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3