Influence of Langmuir circulations on turbulence in the bottom boundary layer of shallow water

Author:

Deng Bing-QingORCID,Yang ZixuanORCID,Xuan Anqing,Shen LianORCID

Abstract

Langmuir circulations (LCs) generated by the interaction between wind-driven currents and surface waves can engulf the whole water column in neutrally stratified shallow water and interact with the turbulence in the bottom boundary layer. In this study, we perform a mechanistic study using wall-resolved large-eddy simulations (LES) based on the Craik–Leibovich equations to investigate the effects of LCs on turbulence statistics in the bottom half of shallow water. The highest Reynolds number considered in this paper, $Re_{\unicode[STIX]{x1D70F}}=1000$, is larger than the values considered in wall-resolved LES studies of shallow-water Langmuir turbulence reported in literature. The logarithmic layer is diagnosed based on a plateau region in the profile of a diagnostic function. It is found that the logarithmic layer disrupted at $Re_{\unicode[STIX]{x1D70F}}=395$ reappears at $Re_{\unicode[STIX]{x1D70F}}=1000$, but the von Kármán constant is slightly different from the traditional value $0.41$. To study the effects of LCs on turbulence statistics, LCs are extracted using streamwise averaging. The velocity fluctuations $u_{i}^{\prime }$ are decomposed into a LC-coherent part $u_{i}^{L}$ and a residual turbulence part $u_{i}^{T}$. It is found that the profiles of LC-coherent Reynolds shear stress $-\langle u^{L}v^{L}\rangle$ obtained at various Reynolds numbers are close to each other in the water-column coordinate $y/h$, with $h$ being the half-water depth. As the Reynolds number (or, by definition, the ratio between the outer and inner length scales) increases, the influence of LCs on the near-bottom momentum transfer is reduced, which is responsible for the reappearance of the logarithmic layer. At all of the Reynolds numbers under investigation, the peaks of $\langle u^{L}u^{L}\rangle$ are collocated in the water-column coordinate $y/h$, while those of $\langle u^{T}u^{T}\rangle$ are collocated in the inner-scale coordinate $y/(\unicode[STIX]{x1D708}/u_{\unicode[STIX]{x1D70F}})$. Due to the increase in the distance between the peaks of $\langle u^{L}u^{L}\rangle$ and $\langle u^{T}u^{T}\rangle$ with the Reynolds number, the profile of $\langle u^{\prime }u^{\prime }\rangle$ forms a bimodal shape at $Re_{\unicode[STIX]{x1D70F}}=700$ and $1000$.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference92 articles.

1. Turbulence statistics in fully developed channel flow at low Reynolds number

2. Mass transport in water waves;Longuet-Higgins;Proc. R. Soc. Lond. A,1953

3. Universality of the Turbulent Velocity Profile

4. Nepf, H. M. 1992 The production and mixing effects of Langmuir circulations. PhD thesis, Department of Civil Engineering, Stanford University.

5. Langmuir turbulence in shallow water. Part 2. Large-eddy simulation

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3