Flow and passive transport in planar multipolar flows

Author:

Zouache M. A.ORCID,Eames I.ORCID,Klettner C. A.ORCID,Luthert P. J.

Abstract

We study the flow and transport of heat or mass, modelled as passive scalars, within a basic geometrical unit of a three-dimensional multipolar flow – a triangular prism – characterised by a side length $L$, a normalised thickness $0.01\leqslant \unicode[STIX]{x1D700}\leqslant 0.1$ and an apex angle $0<\unicode[STIX]{x1D6FC}<\unicode[STIX]{x03C0}$, and connected to inlet and outlet pipes of equal normalised radius $0.01\leqslant \unicode[STIX]{x1D6FF}\leqslant 0.1$ perpendicularly to the plane of the flow. The flow and scalar fields are investigated over the range $0.1\leqslant Re_{p}\leqslant 10$ and $0.1\leqslant Pe_{p}\leqslant 1000$, where $Re_{p}$ and $Pe_{p}$ are respectively the Reynolds and Péclet numbers imposed at the inlet pipe when either a Dirichlet ($\text{D}$) or a Neumann ($\text{N}$) scalar boundary condition is imposed at the wall unattached to the inlets and outlets. A scalar no-flux boundary condition is imposed at all the other walls. An axisymmetric model is applied to understand the flow and scalar transport in the inlet and outlet regions, which consist of a turning region close to the pipe centreline and a channel region away from it. A separate two-dimensional model is then developed for the channel region by solving the integral form of the momentum and scalar advection–diffusion equations. Analytical relations between geometrical, flow and scalar transport parameters based on similarity and integral methods are generated and agree closely with numerical solutions. Finally, three-dimensional numerical calculations are undertaken to test the validity of the axisymmetric and depth-averaged analyses. Dominant flow and scalar transport features vary dramatically across the flow domain. In the turning region, the flow is a largely irrotational straining flow when $\unicode[STIX]{x1D700}\geqslant \unicode[STIX]{x1D6FF}$ and a dominantly viscous straining flow when $\unicode[STIX]{x1D700}\ll \unicode[STIX]{x1D6FF}$. The thickness of the scalar boundary layer scales to the local Péclet number to the power $1/3$. The diffusive flux $j_{d}$ and the scalar $C_{s}$ at the wall where ($\text{D}$) or ($\text{N}$) is imposed, respectively, are constant. In the channel region, the flow is parabolic and dominated by a source flow near the inlet and an irrotational straining flow away from it. When $(\text{D})$ is imposed the scalar decreases exponentially with distance from the inlet and the normalised scalar transfer coefficient converges to $\unicode[STIX]{x1D6EC}_{\infty }=2.5694$. When $(\text{N})$ is imposed, $C_{s}$ varies proportionally to surface area. Transport in the straining region downstream of the inlet is diffusion-limited, and $j_{d}$ and $C_{s}$ are functions of the geometrical parameters $L$, $\unicode[STIX]{x1D700}$, $\unicode[STIX]{x1D6FC}$ and $\unicode[STIX]{x1D6FF}$. In addition to describing the fundamental properties of the flow and passive transport in multipolar configurations, the present work demonstrates how geometrical and flow parameters should be set to control transfers in the different regions of the flow domain.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3